
TRAVIOLI: A Dynamic Analysis for Detecting
Data-Structure Traversals

Rohan Padhye and Koushik Sen
EECS Department

University of California, Berkeley, USA
{rohanpadhye, ksen}@cs.berkeley.edu

Abstract—Traversal is one of the most fundamental operations
on data structures, in which an algorithm systematically visits
some or all of the data items of a data structure. We propose
a dynamic analysis technique, called TRAVIOLI, for detecting
data-structure traversals. We introduce the concept of acyclic
execution contexts, which enables precise detection of traversals
of arrays and linked data structures such as lists and trees in the
presence of both loops and recursion. We describe how the infor-
mation reported by TRAVIOLI can be used for visualizing data-
structure traversals, manually generating performance regression
tests, and for discovering performance bugs caused by redundant
traversals. We evaluate TRAVIOLI on five real-world JavaScript
programs. In our experiments, TRAVIOLI produced fewer than
4% false positives. We were able to construct performance tests
for 93.75% of the reported true traversals. TRAVIOLI also found
two asymptotic performance bugs in widely used JavaScript
frameworks D3 and express.

I. INTRODUCTION

Data structures form the building blocks of almost all
programs. As programs grow large, the implementations of
their data structures and of the code modules that use these
data structures also become complex. Researchers have de-
veloped several tools to identify, to visualize, and to reason
about data structures using static or dynamic program analysis
techniques [10, 16, 21, 24, 28, 31]. Most of these tools
focus on discovering a concise representation or abstraction
of data structures in program memory at one or more program-
locations during program execution.

We focus on understanding where and how data structures
are traversed in a program. Traversal is perhaps one of the
most fundamental operations on data structures, in which
an algorithm systematically visits some or all of the data
items of a data structure [29]. The running time of program
functions that perform traversals usually increases with the
increase in the size of the input data structures. Thus, a proper
understanding of how a program traverses its data structures
is crucial for characterizing the program’s performance.

We propose a dynamic analysis technique, called TRAVIOLI,
to detect data-structure traversals in a program. The technique
works by analyzing read-events generated by an execution of
the program. TRAVIOLI reports a data-structure traversal if
it finds that 1) the program reads distinct memory-locations
at a single program-location, and 2) those memory-locations
either belong to the same object, or belong to different objects
connected by a series of pointers. A key contribution of this

work is the notion of acyclic execution contexts (AECs), which
enables precise detection of traversals in the presence of loops
and recursion with very few false positives.

We describe three applications of TRAVIOLI and AECs.
First, we show how we can construct an access graph to help
visualize data-structure traversals found in a program. Second,
we show how we can use TRAVIOLI to aid in manually
constructing performance regression tests. Finally, we show
how TRAVIOLI can be used to detect redundant-traversal bugs.

A key advantage of TRAVIOLI is that it can detect a traversal
even if a program is executed on a small unit test—the program
does not need to execute a program-location many times to
detect a traversal. Another key advantage of TRAVIOLI is that
it can detect a traversal even if the traversal involves recursive
function calls and loop iterations.

We have implemented TRAVIOLI for JavaScript and made
it publicly available at https://github.com/rohanpadhye/travioli.
We applied TRAVIOLI to 5 popular JavaScript projects. In
our experimental evaluation, we found that TRAVIOLI reported
false positives only 4% of the time. In 93.75% of reported true
traversals, we managed to create a performance regression test.
TRAVIOLI discovered two previously unknown performance
bugs due to redundant traversals in widely used JavaScript
frameworks—D3 and express, which have been confirmed
by the respective project’s developers.

II. OVERVIEW

We propose a technique to identify functions that tra-
verse input data structures and whose running time could
be arbitrarily increased by increasing the size of the input
data structure. We call such functions traversing functions.
In the rest of the section, we present a series of examples
written in JavaScript to motivate the definition of a traversing
function and informally describe our approach for identifying
such functions using dynamic program analysis. Section III
formalizes these ideas concretely.

A. Traversing Functions

Consider the function sum in Figure 1. The function iterates
over an input array of objects, arr, and computes the sum of
the val field of the objects it contains. The function is an
example of a simple data-structure traversing function. The
running time of the function can be increased by increasing
the size of the input array.

1

1 /* Sum values in records in array */
2 function sum(arr) {
3 var result = 0, record , i;
4 for(i = 0; i < arr. length ; i++){
5 record = arr[i];
6 result += record .val;
7 }
8 return result ;
9 }

Fig. 1. A function that traverses an array.

1 /* Compute the length of linked list */
2 function len(list) {
3 var count = 0;
4 while (list != null) {
5 count ++;
6 list = list.next;
7 }
8 return count ;
9 }

Fig. 2. A function that traverses a linked list.

Although in this example we could easily identify the
input to the function (i.e. the array arr), this may be non-
trivial for complex functions where inputs could be passed via
global or static variables. We define read-footprint to precisely
capture the set of inputs to a function. A memory-location is
the address of a piece of memory which stores a program
value that can be read by a program. A memory-location
is often denoted in a program by a variable, an element of
an array, or a field of an object. The read-footprint of a
function consists of all memory-locations that are read by
an execution of the function without any prior write to them
by the execution. Such memory-locations could be treated as
the input to the function. For example, the read-footprint of
the sum function consists of the array arr, all its elements
(accessed via arr[i]), the length field of the array (accessed
via arr.length), and the field val of the objects stored in
the array (accessed via record.val). In contrast, the memory-
locations denoted by the variables i, record and result are
not part of the read-footprint, because, in any execution of
sum, sum first writes them before reading them.

Given the definition of a read-footprint, we can define a
traversing function as follows: we say that a function is a
traversing function if the size of its read-footprint can be
arbitrarily increased by providing suitable inputs, possibly of
larger size. If a function is a traversing function, then we say
that the function contains a traversal.

The function sum in Figure 1 contains a traversal because
the size of the read-footprint increases if the size of the input
array arr is increased.

The function len in Figure 2 is another example of a
traversing function. The read-footprint of the len function
consists of the memory-location denoted by list and the
memory-locations denoted by the next field of all objects
reachable from list by following the next field zero or more
times. The read-footprint of this function can be increased by
increasing the size of the list passed as an argument.

In contrast, the function addPair in Figure 3 is not a
traversing function. The function addPair adds the values
of the first two elements of the input array. While this

1 /* Add values from a pair of array elements . */
2 function addPair (arr) {
3 var rx = arr [0];
4 var ry = arr [1];
5 return rx.val
6 + ry.val;
7 }

Fig. 3. A non-traversing function.

function also reads multiple elements of arr, it is not a
traversing function because the size of its read-footprint is
always bounded regardless of the size of the input array or
the values it contains.

B. Detecting Traversing Functions

The problem of determining if a function contains a traversal
is undecidable in general. However, in many cases, one can de-
termine whether a function has a traversal either by analyzing
the source code or by analyzing an execution of the function.
We propose a dynamic analysis technique, called TRAVIOLI,
to determine if a function contains a traversal. TRAVIOLI
works by checking a set of conditions on an execution of
the function—if the conditions are satisfied then we say that
the function contains a possible traversal. Our technique is
approximate in the sense that it can give both false positives
and negatives. However, we have identified a set of conditions
which, if satisfied, often accurately indicate the presence of a
traversal. A key feature of TRAVIOLI is that we do not need to
invoke the function on an input having a large read-footprint—
TRAVIOLI can detect a traversal by analyzing the execution of
the function on a small test input.

TRAVIOLI uses program instrumentation to generate a trace
of events corresponding to reads and writes of memory-
locations. In the following discussion, whenever an execution
of a function reads a memory-location that the function execu-
tion has not written before, we call it an input read-event. An
input read-event contains the address of the memory-location
being read, the value being read, and the program-location
where the read is performed by the function. TRAVIOLI de-
termines the input read-events during each function execution
and analyzes them to determine if the function has a traversal.

From executions of sum and len in Figures 1 and 2,
respectively, one can observe that different memory-locations
are read at the same program-location: sum reads the elements
of the array arr at line 5 and len reads the next field of
the list objects at line 6. This observation suggests that a
traversal should satisfy the following two conditions:
C1. At least two input read-events at some program-location

` access different memory-locations, and
C2. the memory-locations involved in the input read-events

either belong to the same object, or belong to different
objects connected by a series of pointers.

Note that addPair in Figure 3 does not satisfy the first
condition because the two elements of the array are read at
different program-locations—lines 3 and 4, respectively.

The above two conditions result in a false positive for the
function third in Figure 4. The function third calls n twice,
and line 8 accesses next field of objects connected by a

2

1 /* Get the third element of a linked list */
2 function third (list) {
3 var node = n(list);
4 node = n(node);
5 return node.data;
6 }
7 function n(node) {
8 return node.next;
9 }

Fig. 4. Another example of a non-traversing function.

1 /* Check if a linked list contains a value */
2 function contains (list , x) {
3 if (list === null) {
4 return false ;
5 } else if (list.data === x) {
6 return true ;
7 } else {
8 var tail = list.next;
9 return contains (tail , x);

10 }
11 }

Fig. 5. A recursive function containing a traversal.

pointer. Thus both conditions are satisfied. However, third
does not contain a traversal, since its read-footprint is bounded
to at most two linked-list nodes. The imprecision stems from
the first condition, which requires two input read-events to
occur at similar execution points, where two execution points
are deemed similar if they have the same program-locations.
This notion of similarity of two execution points is too coarse-
grained. We can alleviate this problem if we say two execution
points are similar if they are executing the same program-
location and have identical call stacks. We capture such a state
of execution in a concept called execution contexts.

Definition 1. The execution context of an event with re-
spect to an execution of a function f is a sequence
(f1 : `1)(f2 : `2) . . . (fn : `n), where
• f1 is the function f ,
• for each i such that 1 ≤ i < n, `i is the program-location

within function fi where fi+1 is invoked in the current
execution, and

• the function fn is currently executing the program-
location `n to generate the input read-event.

For example, in an execution of the function third in
Figure 4, the two input read-events at line 8 have the execution
contexts (third:3)(n:8) and (third:4)(n:8) with respect
to the execution of the function third. Unless otherwise
specified, we always refer to execution contexts with respect
to the execution of the function being analyzed for traversals.
In order to remove the false positive for third, we refine the
first condition for traversal as follows:
C1. At least two input read-events at some execution context

access different memory-locations.
The revised condition gives no false positive for any of the

previous examples. Unfortunately, this revision, which uses
a fine-grained notion of similarity of execution points, intro-
duces false negatives—it fails to detect data-structure traver-
sals via recursive functions, such as the function contains
defined in Figure 5.

1 /* Alternately add and subtract from items . */
2 function alt(obj) {
3 return p(obj.items , true , 0);
4 }
5 function p(node , flag , total) {
6 if (node != null) {
7 var value = node.data;
8 return flag ? q(node , flag , total + value)
9 : q(node , flag , total - value);

10 } else {
11 return total ;
12 }
13 }
14 function q(node , flag , total) {
15 var tail = n(node);
16 return p(tail , !flag , total);
17 }
18 function n(node) {
19 return node.next;
20 }

Fig. 6. Mutually recursive functions containing a traversal.

In the function contains, a recursive traversal occurs
at line 8, but its execution does not meet condition C1
because the execution contexts of the input read-events at
this program-location are different. In particular, the exe-
cution context is (contains:8) for the first input read-
event, (contains:9)(contains:8) for the second input
read-event, (contains:9)(contains:9)(contains:8) for
the third input read-event, and so on. Such execution contexts
become more complicated for more complex functions involv-
ing mutual recursion, such as the function alt in Figure 6.

The function alt traverses the linked list rooted at
obj.items and alternately adds and subtracts values of
its nodes to the total. The boolean flag passed to func-
tion p at line 8 decides which operation to perform, and
this flag is toggled by the function q at line 16. Here,
p and q are mutually recursive, and the traversal of the
linked list occurs at line 19 after q calls n at line 15.
The first time program control reaches line 19, the execu-
tion context is (alt:3)(p:8)(q:15)(n:19); the second-
time a different branch is taken in p, and thus the context
is (alt:3)(p:8)(q:16)(p:9)(q:15)(n:19), and so on.

In TRAVIOLI, a key observation we make is that, despite
the differences in the execution contexts of the input read-
events involved in a traversal, the contexts are equivalent
modulo recursion (i.e. after removing any cycles). Such re-
duced execution contexts, which we define next, are called
acyclic execution contexts (AEC) and they are constructed as
follows. For an execution context (f1 : `1)(f2 : `2) . . . (fn : `n),
we first construct an execution-context graph consisting of a
node for each unique function fi and a special node end.
Moreover, let start denote the node corresponding to f1.
For every consecutive pair (fi : `i)(fi+1 : `i+1) in the execution
context, we add a directed edge from fi to fi+1 with label `i
and weight i. Additionally, we add an edge from fn to end

with label `n and weight n. For the example in Figure 6,
the execution-context graph for the second input read-event at
line 19 is shown in Figure 7, where the edges are labeled by
the program-locations ` and weights w.

3

alt p q n end
(start)

`=3,w=1 `=8,w=2

`=16,w=3

`=9,w=4

`=15,w=5 `=19,w=6

Fig. 7. Execution-context graph for the execution context
(alt:3)(p:8)(q:16)(p:9)(q:15)(n:19).

Example Execution contexts AEC
Fig. 4, (third:3)(n:8) (third:3)(n:8)
Line 8 (third:4)(n:8) (third:4)(n:8)
Fig. 2, (len:6) (len:6)
Line 6 (len:6) (len:6)
Fig. 5, (contains:8) (contains:8)
Line 8 (contains:9) (contains:8) (contains:8)
Fig. 6, (alt:3)(p:8)(q:15)(n:19) (alt:3)(p:8)(q:15)(n:19)
Line 19 (alt:3)(p:8)(q:16)(p:9)(q:15)(n:19) (alt:3)(p:8)(q:15)(n:19)

TABLE I
EXECUTION CONTEXTS AND AECS FOR FIRST TWO READ-EVENTS.

Definition 2. The acyclic execution context (AEC) of an
execution context is the sequence (f1 : `1)(f2 : `2) . . . (fk : `k)

such that f1
`1−→ f2 . . . fk

`k−→ fk+1 is the shortest weighted
path from start to end in its execution-context graph.

For the graph in Figure 7, the acyclic execution context
is (alt:3)(p:8)(q:15)(n:19). As the edge weights corre-
spond to the position of the edge in the sequence, multiple
edges between two nodes are disambiguated by choosing the
edge corresponding to the least recent function invocation.

Two distinct execution contexts that have the same AEC
are the recursive analog of distinct iterations of a single loop.
Unlike execution contexts that can grow unboundedly, AECs
are bounded because the number of permutations of distinct
functions in a program is finite. We found AECs to be a useful
abstraction for clustering execution contexts of input read-
events involved in a traversal—such an abstraction helps us
to merge execution points involved in a traversal in a precise
way irrespective of whether the traversal involves recursive
calls or loop iterations.

Table I lists, for some example functions and program-
locations (column 1), the execution contexts (column 2) and
corresponding AECs (column 3) for the first two input read-
events, when the functions are provided an input linked list
containing at least two nodes. The first row shows that the
AECs for input read-events at line 8 in the function third
are distinct, since third does not contain a traversal. The last
three rows show that for the functions len, contains and
alt, multiple input read-events at the given locations have a
common AEC; therefore, they are traversing functions.

We can now refine the conditions that a traversing function
should satisfy in terms of AECs as follows:
C1. At least two input read-events having same the AECs

access different memory-locations, and
C2. the memory-locations involved in the input read-events

either belong to the same object, or belong to different
objects connected by a series of pointers.

We call the AEC of such input read-events a traversal point.
In general, a traversing function may contain more than one
traversal point.

III. FORMAL DESCRIPTION

TRAVIOLI identifies the traversing functions in a program
by analyzing an execution of the program. TRAVIOLI first
instruments the program under analysis to generate runtime
events. The instrumented program is executed with a suitable
set of inputs to generate a trace of runtime events. From the
generated trace, TRAVIOLI determines the input read-events
for every function execution. TRAVIOLI then analyzes each
sequence of input read-events to detect traversals. We next
describe each of these steps formally.

A. Events and Traces

TRAVIOLI tracks reads and writes of every memory-location
during an execution of a program. In a program, a memory-
location can be denoted by a local variable, a global variable,
a field of an object, or an element of an array. A memory-
location is represented by a pair (obj ,fld), where obj is the
address of an object (or array), and fld is the name of a field
(or index of an array element). Local variables are treated as
fields of special activation record objects corresponding to the
stack frames in which they are allocated. Global variables are
treated as fields of a special globals object.

TRAVIOLI instruments a program to generate the following
four kinds of events:

1) READ〈`, obj ,fld , val〉 denotes the read of a memory-
location (obj ,fld) at program-location `. The result of
the read, val , can be a scalar or the address of another
object.

2) WRITE〈`, obj ,fld , val〉 denotes the write of a memory-
location (obj ,fld) at program-location `. Here, val is
the new value that is written to the memory-location.
At function calls, write-events are generated for each
argument passed to the function, where each formal
parameter is treated as a local variable.

3) CALL〈`, f, a〉 is an event corresponding to the invocation
of function f at the program-location (i.e. call site) `.
Here, a is a freshly generated unique identifier for the
newly created activation record object for this function
invocation.

4) RET〈`, a〉 is an event corresponding to a function return-
ing to its caller. Here, ` is the program-location of the
return instruction and a is the identifier of the current
activation record, which is about to be destroyed. Note
that each unique value of a appears in exactly one call
and one return event in the program execution.

The execution of an instrumented program generates a trace
of events. We identify the execution of a function started by
the event CALL〈`, f, a〉 by the activation record identifier a.
For a function execution denoted by a, we use TRACE(a)
to denote the sequence of events generated by the function
execution, including the call and return events that start and
end the execution of the function, respectively. If a function f ′

is invoked during the execution of a function f with activation
record a, and if this invocation creates an activation record a′,
then TRACE(a′) is a subsequence of TRACE(a).

4

B. Read-Traces and Read-Footprints

To compute the read-footprint of a function execution, we
need to determine the set of memory-locations that are read
before being written during the execution. We define the read-
trace of a function execution a, denoted by RTRACE(a), as the
largest set of events ei such that:
• ei = READ〈∗, obj ,fld , ∗〉
• ei ∈ TRACE(a)
• ∀j : (ej = WRITE〈∗, obj ,fld , ∗〉) ∈ TRACE(a)⇒ j > i

The third condition ensures that if there is a write to the
memory-location (obj ,fld) in the trace, then it must occur
after ei. Then, the read-footprint of a function execution a,
denoted by FP(a), is computed as:

FP(a) = {(obj ,fld , val) | READ〈∗, obj ,fld , val〉 ∈ RTRACE(a)}

C. Traversing Functions

We can now provide a formal definition of traversing func-
tions in terms of read-footprints. Let fX denote the execution
of a function f with input X , where X represents the state
of the entire program memory before such an execution,
including the state of any arguments passed to f as parameters.

Definition 3. A function f is a traversing function if and
only if the following condition holds:

∀X1 : fX1 halts,∃X2 : |FP(fX2)| > |FP(fX1)|

Determining if an arbitrary function is a traversing func-
tion is undecidable in general. We therefore detect potential
traversals using the method described in Section II.

D. Detecting Traversals

For every function execution a and for each event e in
TRACE(a), we compute the execution context of e with respect
to a, denoted by EC(a, e) as follows:
• If e is the first event of TRACE(a) and is of the form

CALL〈`, f, a〉, then EC(a, e) = ε, i.e. the empty sequence.
• If e is not the first event of TRACE(a) and is gener-

ated at program-location `, and if the latest call-event
before e without a matching return event before e is
e′ = CALL〈`′, f ′, a′〉, then EC(a, e) = EC(a, e′).(f ′, `),
where s.(f, `) is the sequence obtained by appending the
pair (f, `) to the sequence s.

This is a formal version of Definition 1 given in Section II-B.
Once we have computed the execution context of an event

with respect to a function execution, we determine its acyclic
execution context as per Definition 2. Let us denote the acyclic
execution context of an event e with respect to a function
execution a by AEC(a, e).

Next, we define a reachability relation a
 between

objects accessed in function execution a, such that
o1

a
 on holds if and only if there exists a sequence

(o1, f1, o2), (o2, f2, o3), . . . (on, fn, val), such that each ele-
ment of the sequence is in the read-footprint FP(a). This
relation is reflexive and transitive.

We can now formalize the conditions we check to detect
if an execution a of function f contains a traversal: if there
exist two input read-events ei = READ〈`, obji, f ldi, vali〉 and
ej = READ〈`, objj , f ldj , valj〉 such that:
• ei, ej ∈ RTRACE(a)
• (obji, f ldi) 6= (objj , f ldj)
• AEC(a, ei) = AEC(a, ej) = α

• obji
a
 objj or objj

a
 obji

then we mark the function f as a traversing function and the
AEC α as a traversal point. There may be more than one
acyclic execution context marked as a traversal point for a
function f across one or more of the function’s executions.

IV. APPLICATIONS

A. Access Graphs for Visualization
TRAVIOLI can discover traversal points in functions that

traverse input data structures. In order to identify the data
structure being traversed, and to visualize the traversal across
one or more AECs, we develop the concept of access paths
and access graphs.

A memory-location in a read-footprint, which we call an
input memory-location, can be reached from a program vari-
able via a series of one or more fields or array indices, called
an access path. An access path π in a function execution is a
finite non-empty sequence of the form v.k1.k2 · · · kn, where
n ≥ 0, v is a variable name, and each ki is either a field
name or an array index. Access paths are defined recursively as
follows: the access path v represents the value of the variable
v before the function execution starts, and the access path
π.k represents the value stored in the field or array index k
of the object whose access path is π. For example, the set of
input memory-locations read by the function third in Figure 4
can be represented by the access paths list, list.next,
list.next.next, and list.next.next.data. More than
one access path may refer to the same memory-location.

Since traversing functions have read-footprints that are
unbounded, we found it useful to represent the unbounded
set of access paths involved in a data-structure traversal using
a finite graph, called an access graph. Figure 8 lists access
graphs for various examples used in this paper. In an access
graph, nodes represent a set of values, which may be scalars or
object addresses. There are two types of nodes: variable nodes
and AEC nodes. A variable node with label v represents the
value stored in variable v at the beginning of the function
execution. An AEC node with label α represents the values
read by an input read-event at AEC α. There is an edge with
label k from any node n to an AEC node α if the field k of
an object denoted by the n-node is read in an input read-event
at the AEC α. If more than one field of objects represented
by node n are read at the AEC α, then the edge from the
n node to the α node is labeled with ∗. This happens when
multiple elements of an array or multiple fields of an object
are read at the AEC α. According to this definition, variable
nodes do not have incoming edges. Moreover, all AEC nodes
are reachable from at least one variable node. An AEC node
is colored grey if the corresponding AEC is a traversal point.

5

(a) Access graph for third (Fig. 4)

list (third:3)(n:8)next (third:4)(n:8)next (third:5)data

(b) Access graph for contains (Fig. 5)

x
(contains:8)

list

next
(contains:5)data

next

data

(c) Access graph for alt (Fig. 6)

obj (alt:3)items
(alt:3)(p:8)(q:15)(n:19)

next
(alt:3)(p:7)data

next

data

(d) Access graph for len (Fig. 2)

list (len:6)next

next

(e) Access graph for addPair (Fig. 3)

arr

(addPair:3)0

(addPair:4)

1

(addPair:5)val

(addPair:6)val

(f) Access graph for sum (Fig. 1)

arr (sum:5)* (sum:6)val

Fig. 8. Access graphs for various examples presented in the paper.

An access graph concisely captures the access paths of
all input memory-locations read at each AEC. In particular,
a path in the graph from a variable node v to an AEC
node α corresponds to an access path that begins with
v and is followed by the sequence of edge labels along
the path in the access graph. For example, in Fig. 8a,
the access path of an input memory-location read at AEC
(third:5) is list.next.next.data. In Fig. 8b, the ac-
cess graph contains a cycle. Therefore, the access paths of
the input memory-locations read at AEC (contains:5) are
list.data, list.next.data, list.next.next.data, and
so on. In this manner, an access graph provides a bounded
representation of an unbounded number of access paths.

Figures 8b, 8c and 8d represent access graphs of three
functions that traverse linked lists in different ways, but the
access graphs provide similar abstractions, because, in each
case, the input lists are traversed via the next field at a single
AEC. Figures 8e and 8f depict access graphs for functions that
read array elements. In addPair, array elements are read at
two distinct AECs; therefore, the graph contains two branches
starting from arr. On the other hand, sum traverses the array
and this is captured by the wild-card ∗ that labels the edge
from arr to the AEC (sum:5). The access paths that reach
this AEC are arr.*, which indicate that more than one field
(or in this case, more than one array index) of the variable arr
is read at the AEC (sum:5). Similarly, the access paths that
are read at AEC (sum:6) are arr.*.val, which represent
the val fields of the elements contained in the array arr.

We can use access graphs to determine access paths that
identify the data structure being traversed. We call such an
access path the root of the data structure. The roots are deter-
mined by identifying the shortest access path π corresponding
to access-graph nodes n such that (1) there is an edge from
n to a grey node and (2) there is no grey node along the
path π. For example, the root of the data structure traversed
in Fig. 8b is simply list, while in Fig. 8c the data structure
being traversed is obj.items.

B. Performance Test Generation

Large software projects such as the Chrome browser use so-
phisticated frameworks to continuously perform performance
regression testing [2], where the application is benchmarked
at different versions in the development history; performance
bugs are discovered by identifying code changes that cause
statistically significant deviations in the measurements. Unfor-
tunately, performance regression testing is not as widely used
as functional testing. While there exist several code coverage
tools for measuring completeness of functional tests, there is
a lack of tool support to identify code modules that should be
the focus of performance tests.

Previous research suggests that hard-to-detect performance
bugs are often exposed when applications are executed with
large-scale inputs and/or with special input values [17]. Our
technique can be used to identify the former case. If func-
tional unit tests for an application are available, we can use
TRAVIOLI to find functions that traverse input data structures
and assist developers in constructing performance unit tests
that force long traversals of the input data structures.

We next illustrate the process of creating a performance unit
test from a functional unit test using TRAVIOLI. Consider the
function alt in Fig. 6 and a unit test in Fig. 9. The unit test,
altTest, first invokes the function makeRange at lines 21 and
22 to create sample objects containing lists with the first few
natural numbers. Lines 23 and 24 contain calls to alt and
assertions to ensure that the result matches the expected total.
If this unit test is provided to TRAVIOLI, the following report
is generated:
Data structure ‘obj.items ’ in function ‘alt ’:
- Traversal point: (alt:3)(p:8)(q:15)(n:19) [max 6x]

- Absolute AECs for traversal events :
1. (altTest :23)(alt:3)(p:8)(q:15)(n:19)
2. (altTest :24)(alt:3)(p:8)(q:15)(n:19)

- Values last written at these absolute AECs:
1. (altTest :21)(makeRange :14)
2. (altTest :22)(makeRange :14)

- Traversal point: (alt:3)(p:7) [max 6x]
... <trimmed > ...

TRAVIOLI detects two traversal points for the data structure
obj.items in the function alt, corresponding to the program-
locations that access node.next and node.data. Note that
the traversals are identified when analyzing the executions of
the function alt and not altTest, as the linked list is not
an external input to the latter; therefore, the AECs identifying
the traversal point are with respect to the execution of alt.
TRAVIOLI collects and reports three types of information for
each traversal point α in function f . First, a traversal-point

6

10 /* Creates a linked list with numbers 1..N */
11 function makeRange (N) {
12 var node , rangeList = null ;
13 for (var i = N -1; i >= 0; i--) {
14 node = {data: i, next: rangeList };
15 rangeList = node;
16 }
17 return rangeList ;
18 }
19 /* Test the alt () function */
20 function altTest () {
21 var o1 = { items : makeRange (3) };
22 var o2 = { items : makeRange (6) };
23 assert (alt(o1) === 2);
24 assert (alt(o2) === -3);
25 }

Fig. 9. Unit test for the alt function from Fig. 6.

1 /* Execute ‘alt ‘ over a large linked list. */
2 var benchmark = new Benchmark . Suite ;
3 var bigObj = { items : makeRange (100000) };
4 benchmark .add(’alt -perf ’, function () {
5 return alt(bigObj);
6 }).run ();

Fig. 10. Performance test for the alt function from Fig. 6.

counter keeps track of the maximum number of times f has
executed α. In our example, the longest traversal corresponds
to the second invocation of alt, where the traversal point
(alt:3)(p:8)(q:15)(n:19) is observed six times; there-
fore, the report annotates this AEC with [max 6x]. Second,
every event e is associated with an absolute AEC, which
is equivalent to an AEC with respect to a top-level entry
function (such as main in some languages) or a configurable
harness function from the test framework. These AECs are
listed under the header "Absolute AECs for traversal
events" in the report; the example shown above lists AECs
with respect to the harness altTest. This information aids
in determining how traversing functions are invoked by client
code or test cases. Third, for all input memory-locations m
read at an event e, we associate an event e′ at which m was
last written-to before e. When reporting traversals, TRAVIOLI
lists the absolute AECs of such write events for memory-
locations involved in traversals under the header "Values
last written at". In example shown above, the memory-
locations read at the first traversal point are the next fields of
the linked-list nodes; therefore, the report lists the two distinct
absolute AECs by which these fields were populated before
the traversal. This information aids in identifying the point of
construction or last modification of elements of a data structure
that is subsequently traversed. In general, the relationship
between reads and writes in a traversal is many to many: data-
structure elements that were last modified at distinct locations
may be traversed at the same absolute AEC, while a data-
structure whose elements are populated at a single absolute
AEC may be subsequently traversed at multiple AECs.

In our experiments, we found that this report provided
useful information to track where and how data structures were
constructed and provided as inputs to traversing functions. If
the goal of a developer is to write a performance unit test
exercising a traversal point, they can use this information
to write a test that will increase the value of the traversal-

1 /* Does ‘list ‘ contain everything in ‘arr ‘? */
2 function containsAll (list , arr) {
3 for (var i = 0; i < arr. length ; i++) {
4 var item = arr[i];
5 if (contains (list , item) == false) {
6 return false ;
7 }
8 }
9 return true ;

10 }
Fig. 11. A function that redundantly traverses a list.

point counter by several orders of magnitude. Fig. 10 shows
a sample performance test for the running example, using
the Benchmark.js API [1]. To verify that this test does
indeed have a large read-footprint, we can run it through
TRAVIOLI to generate a report that will annotate the AEC
(alt:3)(p:8)(q:15)(n:19) with [max 100000x].

C. Detecting Redundant-Traversal Bugs

TRAVIOLI can also be used to detect redundant traversals,
such as the traversal in the function containsAll shown in
Figure 11. The function containsAll takes as input a linked
list list and an array arr and returns true if an only if all
items in the array are also present in the list, by repeatedly
invoking the contains function defined in Figure 5. The list
is traversed multiple times without any change to its data—this
is a case of redundant traversal. If the list contains n elements
and the array is of length m, then the worst-case complexity of
containsAll is O(mn). Such instances are often indicative
of performance bugs and can be fixed by using different data
structures (such as hashed sets) or caching. TRAVIOLI found
two such instances in popular JavaScript projects, which were
acknowledged by their developers as performance issues.

In order to determine if a traversal in a function is redundant,
we need to analyze the sequence of concrete memory-locations
(i.e. actual memory addresses) read at a traversal point of
the function. If the sequence contains repeated contiguous
subsequences, then we know that the memory-locations in
these contiguous subsequences are traversed repeatedly. We
then say the function has a redundant traversal. Formally, if
the sequence of memory-locations read at a traversal point can
be partitioned into the contiguous subsequences β1, β2, . . . , βk
where k ≥ 2 and for each 1 ≤ i, j ≤ k, either βi is a prefix
of βj or βj is a prefix of βi, then the sequence of memory-
locations indicate a possibly redundant traversal.

For example, if a, b and c are concrete memory-locations,
then the sequence of reads abcaba can be partitioned into
repeating contiguous subsequences (abc)(ab)(a) indicating re-
dundant traversals. On the other hand, the sequence abcacab is
partitioned as (abc)(ac)(ab) and does not indicate a redundant
traversal because ac is not a prefix of ab and vice versa.

Consider the execution of containsAll on an input linked
list list containing the elements [’a’, ’b’, ’c’] and an
array arr containing [’c’, ’b’, ’a’]. The report generated
by TRAVIOLI when analyzing this execution indicates the
presence of a potentially redundant traversal and includes the
lengths of the repeating subsequences observed at the AEC
corresponding to the redundant traversal, as follows:

7

Data structure ‘list ’ in function ‘containsAll ’:
- Traversal point: (containsAll :5)(contains :8) [6x]

- Redundant subsequences : [3, 1, 2]
- Absolute AECs for traversal events :
... <trimmed > ...

In general, a redundant traversal can be detected by a
memory-location sequence as short as aba or aab; therefore,
TRAVIOLI can detect redundant traversals from functional
unit tests alone. Moreover, TRAVIOLI can detect redundant
traversals in functions that use recursion, such as the example
in Figure 11, which could not be detected using previous
approaches [19, 20].

V. EVALUATION

We have implemented TRAVIOLI using the Jalangi frame-
work [25] for instrumenting JavaScript programs. We evaluate
TRAVIOLI on a set of five open-source JavaScript projects. The
projects were chosen because they are widely used, they have
comprehensive unit tests that can be launched from command-
line using Node.js [9], and they represent a variety of sce-
narios where data-structure performance may be important.
The projects include d3-collection [4], a data-structure
library used in the popular D3 [3] visualization toolkit,
immutable-js [7], an immutable data-structure library de-
veloped by Facebook, d3-hierarchy [5], which provides
algorithms for visualizing hierarchical data-sets, express [6],
a server-side web framework, and mathjs [8], an extensive
math library. We analyze the matrix module of mathjs. The
source code of TRAVIOLI has been made publicly available at
https://github.com/rohanpadhye/travioli, along with the scripts
to reproduce the experiments described in this section.

Table II provides an overview of experiments performed
on a MacBook Pro with an Intel Core i7-4770HQ processor
and 16GB RAM running OS X 10.10 and Node.js v4.4.0. All
listed run-times are in seconds. Column 1 lists the candidate
projects, column 2 lists the number of unit tests in their test
suites, column 3 reports the running time of the corresponding
test suites, and column 4 reports the running time of the
instrumented test suites, including the time to instrument
the source files (project + dependencies) and the time to
generate events. Column 5 lists the number of events that are
generated and subsequently analyzed. Columns 6–8 report the
time required to analyze these events, the number of function
executions analyzed for traversals, and the number of unique
functions for which access graphs are generated. Although
we compute the read-trace for all function executions, we
exclude analysis of functions from the project’s dependencies
or test suites. Columns 9–11 report the results of traversal
detection: the number of traversing functions, the number of
distinct access paths identified as roots of data structures (cf.
Section IV-A), and the number of distinct AECs marked as
traversal points. Columns 12–14 repeat this information for
redundant traversals (cf. Section IV-C).

For each candidate project, the instrumented tests as well
as the analysis of traces completed within few minutes. We
evaluate the quality of the traversals reported by answering
four research questions:

RQ1. Do the traversals reported by TRAVIOLI contain false
positives?

RQ2. Can we generate performance tests for the traversals
reported by TRAVIOLI?

RQ3. Do the redundant traversals reported by TRAVIOLI con-
tain false positives?

RQ4. Do the redundant traversals reported by TRAVIOLI cor-
respond to performance issues?

Methodology: We answer RQ1 and RQ2 by manually
evaluating a subset of the traversals reported by TRAVIOLI. For
each candidate project, we randomly sample up to 10 access
paths reported as roots of data structures being traversed, and
randomly pick one reported traversal point for each access
path. If a reported traversal point does not correspond to a
traversing function within the library, we classify it as a false
positive. In all other cases, the traversal point lies within a
traversing function as per Definition 3, and is thus a true
positive. We attempt to generate performance tests for these
functions such that the counter of the AEC corresponding
to the traversal point increases by a factor of 100 (see
Section IV-B). However, this is sometimes not possible. A
traversing function may be private to the library to which it
belongs, and this library may use domain-specific constraints
to ensure that the function receives inputs of only a bounded
size. We classify such cases as restricted traversals. In such
instances, we cannot write a performance test using only the
external public API, and indeed this is acceptable since single
restricted traversals cannot become a performance bottleneck.

Similarly, we answer RQ3 and RQ4 by manually evaluating
a random subset of the traversal points that are reported
as redundant. If the reported traversal point was not really
redundant, we mark it as a false positive. If the traversal
was redundant but the input was bounded in size, we mark
it as a restricted traversal. We classify the remaining cases as
either bugs—when the implementation performs more work
than an optimal algorithm—or necessary redundancies—when
the optimal algorithm necessarily requires repeated traversals
of a data structure (e.g. matrix multiplication).

RQ1: Of the 50 traversal points that were randomly sam-
pled across all candidate projects, we found only two false
positives: one in immutable-js and another in express.
In immutable-js, an array data structure was incorrectly
reported to be traversed. The false positive resulted from a
related traversal of a hash-map that mapped strings to integer
values; the resulting integers were used as indices to access a
single element of different arrays. The array accesses occurred
within the same loop that traversed the hash-map, and in
at least two iterations a common array was accessed at the
same AEC; therefore, the conditions that TRAVIOLI checks for
detecting traversals were satisfied. In express, one traversal
point was in the test suite itself, in a function that was supplied
as a callback parameter to express. Since the traversal was
not really part of express we marked this as a false positive.

RQ2: Of the 48 true traversals in our sample, we found
three instances of restricted traversals; all three belonged
to immutable-js. The corresponding traversing functions

8

Application Test Suite Instrumented Tests Analysis All Traversals Redundant Traversals
Test
Cases

Run.
Time

Run.
Time

Events
Logged

Run.
Time

Function
Invocations

Unique
Func.

Unique
Func.

Unique
Roots

Unique
AECs

Unique
Func.

Unique
Roots

Unique
AECs

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)
d3-collection 233 0.21 7.95 593,752 3.88 1,340 37 13 15 36 0 0 0
immutable-js 418 0.65 81.12 11,677,694 149.69 260,642 513 239 460 2,859 45 62 106
d3-hierarchy 49 0.18 10.14 1,021,083 6.40 5,523 50 20 23 88 1 1 1
mathjs:matrix 357 0.59 43.80 4,341,074 44.33 26,931 282 128 226 2,261 31 13 1,444
express 696 2.12 81.09 7,454,087 91.52 53,382 158 50 81 1,847 2 2 2

TABLE II
OVERVIEW OF EXPERIMENTS CONDUCTED TO EVALUATE TRAVIOLI. ALL TIMES ARE IN SECONDS.

Application False
Positives

Restricted
Traversals

Perf. Tests
Generated

Total

d3-collection 0 0 10 10
immutable-js 1 3 6 10
d3-hierarchy 0 0 10 10
mathjs:matrix 0 0 10 10
express 1 0 9 10
Total 2 3 45 50

TABLE III
EVALUATION OF SAMPLED TRAVERSAL POINTS.

Application False
Positives

Restricted
Traversals

Necessary
Redun-
dancies

Perf.
Bugs

Total

d3-collection 0 0 0 0 0
immutable-js 4 6 0 0 10
d3-hierarchy 0 0 0 1 1
mathjs:matrix 0 3 7 0 10
express 0 1 0 1 2
Total 4 10 7 2 23

TABLE IV
EVALUATION OF SAMPLED REDUNDANT TRAVERSAL POINTS.

perform traversals of input arrays. However, these functions
are only used to traverse arrays contained in nodes of a bit-
partitioned vector trie. Each node in such a trie can have up to
a maximum of 32 child nodes. These child nodes are stored
in an array, whose traversal was reported by TRAVIOLI. The
array traversal counter can never exceed 32.

We summarize the results of the evaluation of RQ1 and RQ2
in Table III. The false positive rate in our evaluation was 4%.
For the true positives, we could construct performance tests in
93.75% of the cases.

RQ3: From the reported redundant traversals, we sampled
10 data structures and one corresponding traversal point from
both immutablejs and mathjs. d3-hierarchy and express
contained fewer than 10 reports of redundant traversals and
we analyzed all of those cases. No redundant traversal was
reported for d3-collection. We manually analyzed a to-
tal of 23 redundant traversals. All false positives were in
immutable-js. The sequence of memory-locations read at
the reported traversal points did contain repeated contiguous
subsequences, but this was specific to the particular inputs in
the test suites. The corresponding traversing functions do not
perform redundant computations in general.

RQ4: Of the 19 sampled redundant traversals that were true
positives, we found 10 to be restricted traversals. For example,
the implementation of maps in immutable-js uses ArrayMap
with linear-time lookup only when the number of elements
is less than 8; for larger maps the implementation switches
to using hash-tables with constant-time lookup. In express,
one reported redundant traversal was restricted because the

traversing function can only ever be invoked internally with
a list of HTTP methods (e.g. GET, POST), of which only 26
are supported; therefore, this function does not lead to per-
formance issues. In mathjs, all reported redundant traversals
belonged to algorithms that required repeated traversals, such
as matrix multiplication, and thus were not classified as bugs.

Two of the reported redundant traversals were real per-
formance bugs—they were confirmed by the developers. In
d3-hierarchy, TRAVIOLI found a bug in the implementation
of binary tree-maps, which are a visualization of hierarchical
data as rectangles that are repeatedly partitioned into two
sets. The implementation partitions an array of numbers by
computing an index such that the sums of the left and
right sub-arrays are approximately equal. This process is
recursively repeated for each partition, resulting in a binary
tree. We detected, from a simple unit test, that the algorithm
to find the index to partition the array performed redundant
traversals at each step to compute the sums of the sub-
arrays. We were able to show that in the worst-case the
implementation had complexity O(n2). We reported and fixed
this bug (see https://github.com/d3/d3-hierarchy/issues/44), by
computing the sums of all prefixes of the input array ahead-
of-time, and using a binary search to find the partition index
at each step. The fixed implementation is O(n log n) in the
worst-case, and provides about a 20× speed-up for a binary
tree-map with 1,000 nodes.

The second bug was found in express. When an express
application is configured to support m URL patterns with n
handlers using a particular API, the list of URL patterns is
redundantly traversed once per handler to construct a regular
expression that combines all patterns. As regex compilation
is expensive, this implementation may lead to longer start-up
times for some applications. We reported this as a performance
issue, which was subsequently acknowledged by the develop-
ers (see https://github.com/expressjs/express/issues/3065).

Table IV summarizes the evaluation of redundant traversals.
17.4% of the reports were false positives. 52.6% of the true
positives were restricted, and 36.8% were benign. TRAVIOLI
found two real performance bugs that have been confirmed by
the developers.

VI. DISCUSSION

Human effort: The performance tests for the traversals
sampled in our experiments were manually constructed by one
of the authors, who required less than two hours per project
(i.e. up to 10 tests), despite having no prior experience with
the projects’ internal source code or external API.

9

Completeness: TRAVIOLI uses dynamic analysis; therefore,
it can only detect and report traversals if they occur during
program execution. We cannot precisely evaluate TRAVIOLI
for false negatives, because it is not possible to statically
determine all traversal points, and it is not feasible to man-
ually evaluate all candidate acyclic execution contexts. Our
technique also does not consider write-only traversals, such as
program functions that construct data structures from primitive
values (e.g. parsing source code into an abstract syntax tree).

Threats to validity: Due to the manual effort required, we
only evaluated a randomly sampled subset of the reported
traversals; the results are therefore subject to sampling error.
Further, our experiments indicate that the distribution of false
positives, restricted traversals, and necessary redundancies is
not uniform; therefore, our results may not generalize to
project domains outside of those we considered for evaluation.
However, we are encouraged by the fact that we could easily
construct performance tests for arbitrary projects as well as
discover asymptotic performance bugs in two of them.

VII. RELATED WORK

1) Redundant computation bugs: Clarity [20] uses static
analysis to detect program functions in which an O(n)
traversal occurs O(m) times redundantly. As our analysis is
dynamic, we can determine if repeated traversals are redundant
at a finer granularity. For example, if a binary-search-tree is
repeatedly queried for different values, we do not report a re-
dundancy if at least two traversals follow different paths in the
tree. Clarity conservatively assumes all conditional branches
to be equally likely, and thus cannot make such fine-grained
distinctions automatically. Clarity therefore uses source-level
annotations to recognize operations on standard Java collec-
tions that have sub-linear average-time complexity. However,
Clarity’s static analysis is a sound over-approximation, while
our dynamic analysis is subject to false negatives.

Toddler [19] uses dynamic analysis to detect similar mem-
ory access patterns at the same execution context. It detects
redundancies by analyzing the execution of long-running per-
formance tests and extracting similarities in memory accesses
across loop iterations. Our use of AECs and object connectiv-
ity allow us to detect traversals from as little as two iterations,
and therefore we can detect redundant traversals using unit
tests alone. Moreover, acyclic execution contexts enable the
detection of recursive data-structure traversals, which is not
supported by either of these tools.

MemoizeIt [14] uses dynamic analysis to detect functions
whose computation can be memoized—this includes a special
case of redundant traversals where the repeating subsequences
are exactly equal. MemoizeIt can therefore detect the type
of bug we found in express, but not the bug we found in
d3-hierarchy.

2) Performance test generation: SpeedGun [22] generates
performance regression tests for multi-threaded programs to
identify code changes that influence the amount of synchro-
nization required. PerfPlotter [12] uses symbolic execution
to generate distributions of a program’s performance under

different inputs. WISE [11] uses symbolic execution to au-
tomatically generate tests that exercise worst-case behavior.
These techniques aim to automatically generate test programs
or inputs that exercise special performance characteristics. Our
goal is not to automate test generation, but to identify program
functions that traverse data structures and to aid developers in
writing performance tests that exercise these traversals.

3) Data-structure analysis: A number of techniques have
been developed to analyze data structures using dynamic
analysis. HeapViz [10] summarizes relationships between Java
collections to provide a concise visualization of the heap.
MG++ [28] generates representations of dynamically evolving
data structures. Pheng and Verbrugge [21] measure the number
of data structures created and modified over time in Java
programs. Laika [13] detects data structures in executing
binaries using Bayesian unsupervised learning. DSI [31] iden-
tifies pointer-based data structures in C programs. Raman
and August [23] detect recursive data structures and profile
structural modifications in order to measure their stability.

Similarly, several static analysis techniques aim to discover
abstract representations of data structures used in a program,
and this body of work usually falls into the category of shape
analysis [16]. Sophisticated frameworks can be used to prove
complex data-structure invariants [24].

In all these techniques, the central theme has been iden-
tifying the type of data structures or their representation
in program memory, and not on identifying functions that
traverse these data structures to perform work.

4) Execution Contexts and AECs: In dynamic analysis,
execution indexing [32] allows uniquely identifying a point
in a program execution. Such execution indices are too fine-
grained for TRAVIOLI. The problem of reasoning about an
unbounded number of calling contexts in recursive programs
is well-known in the field of static analysis [26, 27]. Our
approach of constructing AECs by removing cycles in execu-
tion contexts is similar to the approach employed by Whaley
and Lam [30] for context-sensitive pointer analysis, where
connected components in the call graph are collapsed to a
single node. A subtle difference is that we retain the sequence
of functions on paths from the entry of a connected component
to its exit; therefore, the resulting AEC is a valid sequence of
call sites that can be used for stack-trace debugging.

5) Access Graphs: Access graphs were first used in a static
liveness analysis [18] to represent an unbounded set of heap-
memory locations that may be live at a program point. Our
access graphs are similar in that a node can represent a regular
pattern of access paths. However, we distinguish nodes based
on AECs rather than program-locations as in the original
formulation; therefore, our access graphs are context-sensitive.

ACKNOWLEDGMENT

We would like to thank Caroline Lemieux for her valuable
comments on the paper. This research is supported in part by
an Okawa Foundation Research Grant, and NSF grants CCF-
1409872 and CCF-1423645.

10

REFERENCES

[1] Benchmark.js. https://benchmarkjs.com. Retrieved: August 2016.
[2] Chrome performance dashboard. https://chromeperf.appspot.com. Re-

trieved: August 2016.
[3] D3: a JavaScript library for visualizing data with HTML, SVG, and

CSS. https://d3js.org. Retrieved: August 2016.
[4] d3-collection: Handy data structures for elements keyed by string. https:

//github.com/d3/d3-collection. Retrieved: August 2016.
[5] d3-hierarchy: 2d layout algorithms for visualizing hierarchical data.

https://github.com/d3/d3-hierarchy. Retrieved: August 2016.
[6] express.js: Fast, unopinionated, minimalist web framework for node.

https://github.com/expressjs/express. Retrieved: August 2016.
[7] immutable.js: Immutable persistent data collections for Javascript. https:

//github.com/facebook/immutable-js. Retrieved: August 2016.
[8] Math.js: An extensive math library for JavaScript and Node.js. https:

//github.com/josdejong/mathjs. Retrieved: August 2016.
[9] Node.js. https://nodejs.org. Retrieved: August 2016.

[10] Edward E. Aftandilian, Sean Kelley, Connor Gramazio, Nathan Ricci,
Sara L. Su, and Samuel Z. Guyer. Heapviz: Interactive heap visualization
for program understanding and debugging. In Proceedings of the
5th International Symposium on Software Visualization, SOFTVIS ’10,
pages 53–62, New York, NY, USA, 2010. ACM.

[11] Jacob Burnim, Sudeep Juvekar, and Koushik Sen. WISE: Automated
test generation for worst-case complexity. In Proceedings of the 31st
International Conference on Software Engineering, ICSE ’09, pages
463–473, Washington, DC, USA, 2009. IEEE Computer Society.

[12] Bihuan Chen, Yang Liu, and Wei Le. Generating performance distribu-
tions via probabilistic symbolic execution. In Proceedings of the 38th
International Conference on Software Engineering, ICSE ’16, pages 49–
60, New York, NY, USA, 2016. ACM.

[13] Anthony Cozzie, Frank Stratton, Hui Xue, and Samuel T. King. Digging
for data structures. In Proceedings of the 8th USENIX Conference on
Operating Systems Design and Implementation, OSDI’08, pages 255–
266, Berkeley, CA, USA, 2008. USENIX Association.

[14] Luca Della Toffola, Michael Pradel, and Thomas R. Gross. Performance
problems you can fix: A dynamic analysis of memoization opportunities.
In Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2015, pages 607–622, New York, NY, USA, 2015. ACM.

[15] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C North,
and Gordon Woodhull. Graphvizopen source graph drawing tools. In
International Symposium on Graph Drawing, pages 483–484. Springer,
2001.

[16] Rakesh Ghiya and Laurie J. Hendren. Is it a tree, a DAG, or a cyclic
graph? A shape analysis for heap-directed pointers in C. In Proceed-
ings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’96, pages 1–15, New York, NY, USA,
1996. ACM.

[17] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan
Lu. Understanding and detecting real-world performance bugs. In
Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’12, pages 77–88, New
York, NY, USA, 2012. ACM.

[18] Uday P. Khedker, Amitabha Sanyal, and Amey Karkare. Heap reference
analysis using access graphs. ACM Trans. Program. Lang. Syst., 30(1),
November 2007.

[19] Adrian Nistor, Linhai Song, Darko Marinov, and Shan Lu. Toddler:
Detecting performance problems via similar memory-access patterns.
In Proceedings of the 2013 International Conference on Software
Engineering, ICSE ’13, pages 562–571, Piscataway, NJ, USA, 2013.
IEEE Press.

[20] Oswaldo Olivo, Isil Dillig, and Calvin Lin. Static detection of asymptotic
performance bugs in collection traversals. In Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2015, pages 369–378, New York, NY, USA,
2015. ACM.

[21] Sokhom Pheng and Clark Verbrugge. Dynamic data structure analysis
for Java programs. In Proceedings of the 14th IEEE International
Conference on Program Comprehension, ICPC ’06, pages 191–201,
Washington, DC, USA, 2006. IEEE Computer Society.

[22] Michael Pradel, Markus Huggler, and Thomas R. Gross. Performance
regression testing of concurrent classes. In Proceedings of the 2014
International Symposium on Software Testing and Analysis, ISSTA 2014,
pages 13–25, New York, NY, USA, 2014. ACM.

[23] Easwaran Raman and David I. August. Recursive data structure
profiling. In Proceedings of the 2005 Workshop on Memory System
Performance, MSP ’05, pages 5–14, New York, NY, USA, 2005. ACM.

[24] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape
analysis via 3-valued logic. In Proceedings of the 26th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
’99, pages 105–118, New York, NY, USA, 1999. ACM.

[25] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs.
Jalangi: A selective record-replay and dynamic analysis framework for
JavaScript. In Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2013, pages 488–498, New York,
NY, USA, 2013. ACM.

[26] Micha Sharir and Amir Pnueli. Two approaches to interprocedural data
flow analysis. In Muchnick and Jones, editors, Program Flow Analysis:
Theory and Applications. Prentice-Hall, Inc, 1981.

[27] Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD
thesis, Carnegie Mellon University, May 1991.

[28] V. Singh, R. Gupta, and I. Neamtiu. MG++: Memory graphs for
analyzing dynamic data structures. In 2015 IEEE 22nd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER), pages 291–300, March 2015.

[29] Steven S. Skiena. The Algorithm Design Manual. Springer London,
second edition, 2009.

[30] John Whaley and Monica S. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In Proceedings of
the ACM SIGPLAN 2004 Conference on Programming Language Design
and Implementation, PLDI ’04, pages 131–144, New York, NY, USA,
2004. ACM.

[31] David H. White, Thomas Rupprecht, and Gerald Lüttgen. DSI: An
evidence-based approach to identify dynamic data structures in C
programs. In Proceedings of the 25th International Symposium on
Software Testing and Analysis, ISSTA 2016, pages 259–269, New York,
NY, USA, 2016. ACM.

[32] Bin Xin, William N. Sumner, and Xiangyu Zhang. Efficient program
execution indexing. In Proceedings of the 29th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI
’08, pages 238–248, New York, NY, USA, 2008. ACM.

11

