
Mining API Expertise Profiles
with Partial Program Analysis

Senthil Mani, Rohan Padhye and Vibha Singhal Sinha
IBM Research

{sentmani,ropadhye,vibha.sinha}@in.ibm.com

Abstract—A developer’s API usage expertise can be estimated
by analyzing source code that they have checked-in to a software
repository. In prior work we proposed a system for creating a
social network of developers centered around the APIs they use in
order to recommend people and projects they might be interested
in. The implementation of such a system requires analyzing code
from repositories of large numbers of projects that use different
build systems. Hence, one challenge is to determine the APIs
referenced in code in these repositories without relying on the
ability to resolve every project’s external dependencies. In this
paper, we consider a technique called Partial Program Analysis
for resolving type bindings in Java source code in the absence of
third-party library binaries. Another important design decision
concerns the approach of associating such API references with
the developers who authored them such as walking entire change
history or use blame information. We evaluate these different
design options on 4 open-source Java projects and found that both
Partial Program Analysis and blame-based approach provide
precision greater than 80%. However, use of blame as opposed
to complete program history leads to significant recall loss, in
most cases greater than 40%.

I. INTRODUCTION

A developer’s expertise can be characterized in two different
dimensions, implementation expertise and usage expertise.
Implementation expertise summarizes what a developer knows
about a project. This information is used to answer questions
such as “Who can tell me how this module works?” or “Who
can fix this bug?”. Various works have attempted to infer
implementation expertise using different information sources.
These include analyzing a project’s change-history [1], bug
reports [2] or a developer’s actions within an IDE [3]. Usage
expertise [4] addresses the question “What external libraries
can a developer use?”. Unlike implementation expertise, usage
expertise is not limited in scope to the project from which it
was mined. Developers often use the same libraries across
projects and their familiarity with a library’s application pro-
gramming interface (API) acts as a transferable skill that is
representative of their domain-specific knowledge.

In a previous ICSE NIER track paper [5], we proposed the
construction of developer social networks using a graph of
people, projects and the libraries they use. These networks
were then used to generate recommendations such as a projects
that a developer could join or people whom they could connect
with. We also demonstrated a prototype of our application,
APINet, which was seeded with data from over 500 open-
source Java projects hosted on GitHub1.

1https://github.com

Any system that attempts to mine expertise profiles from
hundreds or thousands of projects must make two design
decisions: (1) how to extract API usages from source code and
(2) how to associate these API references with their authors
for creating expertise profiles.

In an ideal scenario, API usages could be extracted from
source code by using standard program analysis tools which
can generate typed intermediate representations (IR) of a
program. However, in a real scenario, the number of projects is
very large, encompassing a heterogeneous landscape of build
processes and tools. It is impractical to attempt to resolve every
project’s dependencies as is required by most static analysis
tools in order to generate typed IR. This is non-trivial to
do even for the latest versions of each project, let alone for
every snapshot in the project’s change-history, as attempted
by Williams and Hollingsworth [6], who note the extreme
difficulties of such a approach. Therefore, we consider the
use of partial program analysis (PPA) [7] for extracting API
usages from source code in the absence of third-party libraries.
PPA can analyze individual Java source files and perform best-
effort type inferencing to resolve bindings for class and method
references. These API references could then be matched to
the developers who authored them for generating expertise
profiles.

In order to associate API references with their authors, there
are two options. The ideal approach would be to analyze
each change committed to the repository of a project, identify
the APIs referenced in the newly added or modified code,
and associate these APIs with the author of the change-
set. However, the computational cost associated with walking
entire change histories of each project is non-trivial. Deploying
this approach on a platform such as GitHub might imply that
new commits get generated at a rate faster than they can be
analyzed for API usage. As a scalable alternative, we can take
snapshots of projects at periodic intervals and use the blame
operation available in most version control systems to identify
the author of each line of code, and assign to this developer all
APIs referenced in that line. However, this approach is likely
to miss instances of API usage by developers if the code they
have contributed is subsequently overwritten by someone else.

We empirically evaluate these design choices by construct-
ing a ground truth set derived from four open-source Java
projects whose dependencies could be resolved using Maven2.

2http://maven.apache.org

1 package app.sample;
2
3 import java.sql.Connection;
4 import javax.servlet.http.HttpServlet;
5 import javax.servlet.http.HttpServletRequest;
6 import javax.servlet.http.HttpServletResponse;
7
8 import org.apache.log4j.Logger; // Added in revision 2 by Bronn
9 import org.json.JSONObject;

10 import com.customdb.*;
11
12 public class ProfileServlet extends HttpServlet {
13 private Logger logger = Logger.getLogger(ProfileServlet.class); // Added in revision 2 by Bronn
14
15 public void doGet(HttpServletRequest request, HttpServletResponse response) {
16 Connection conn = null;
17 try {
18 conn = DatabaseManager.getConnection();
19 JSONObject profileJson = new JSONObject(ProfileUtils.getProfileMap(conn,
20 request.getRemoteUser(), getInitParameter("PROFILE_SOURCE")));
21 response.getWriter().println(profileJson);
22 } catch (Exception e) {
23 logger.error("Something bad happened.", e); // Added in revision 2 by Bronn
24 } finally {
25 try { conn.close(); } catch (Exception ignore) {} // Added in revision 3 by Bronn
26 }
27 }
28 }

Fig. 1. A toy example of a Java source file with API usages underlined. The class is an HTTP Servlet that fetches a user’s profile from a database using a
utility method, and produces the resulting profile encoded in JSON. The source code shown here is the state of the file after revision number 3.

We use precision and recall as metrics to determine efficacy
of each choice. Our main contributions in this paper are:

• An empirical evaluation of the effectiveness of partial
program analysis for extracting API usages in order to
generate developer expertise profiles.

• An empirical evaluation of the quality of blame-based ex-
pertise assignment to developers as opposed to a change-
history walking approach.

The rest of the paper is structured as follows: We motivate
this work with the help of some examples in Section II.
We present the results of our empirical evaluation of these
alternatives in Section III and enumerate the possible threats
to the validity of these experiments in Section IV. Section V
discusses related work and we conclude in Section VI along
with a discussion of future work.

II. THEORY AND MOTIVATION

In this section we first define some terminologies used in
this paper and then formulate three research questions which
are evaluated in the subsequent section. Figure 1 is a running
example used throughout this section.

A. Terminology

1) API usage: A developer’s familiarity with a third-party
library depends on their ability to predict the effect of execut-
ing some operation provided by the library via an application
programming interface (API). Hence, while analyzing Java
code for the purposes of determining API expertise, we

restrict ourselves to code elements that can possibly have side-
effects, such as method invocations or class instantiations (via
constructor methods).

Definition 1. An instance of API usage in Java source
code occurs at the invocation of an object’s method, at
an invocation of a static class method or at the point of
class instantiation via an object’s constructor.

In Figure 1, all API usages that match this definition have
been underlined. The third column of Table I shows the
fully qualified names of the API methods, as resolved by a
complete program analysis (CPA) that would use third-party
libraries. Although most classes have been explicitly imported,
ProfileUtils and DatabaseManager are referenced without
qualification anywhere in the file. While the former belongs
to the same package as the enclosing ProfileServlet, the
latter has been implicitly imported via a wildcard on line 10.

2) Expertise Profiles: Although the the notion of expertise
is probably very subjective, in order to remain consistent with
existing literature, we use the term expertise profile to refer to
the set of artifacts that some automated technique deems to be
familiar to a developer. For Java libraries, different granularity
of library artifacts – such as packages, classes or methods –
may be considered for building such a profile. In this paper,
we use the granularity of Java classes to build these profiles
since it is typically the API documentation of a class that

TABLE I
API USAGES EXTRACTED FROM ProfileServlet

Line Invocation API extracted using CPA at Revision 3 API extracted using PPA at Revision 3 API extracted using CPA at Revision 4
(1) (2) (3) (4) (5)
13 getLogger org.apache.log4j.Logger org.apache.log4j.Logger org.slf4j.LoggerFactory
18 getConnection com.customdb.DatabaseManager UNKNOWNP.DatabaseManager com.customdb.DatabaseManager
19 new JSONObject org.json.JSONObject org.json.JSONObject org.json.JSONObject
19 getProfileMap app.sample.ProfileUtils UNKNOWP.ProfileUtils app.sample.ProfileUtils
20 getRemoteUser javax.servlet.http.HttpServletRequest javax.servlet.http.HttpServletRequest javax.servlet.http.HttpServletRequest
20 getInitParameter javax.servlet.GenericServlet javax.servlet.http.HttpServlet javax.servlet.GenericServlet
21 getWriter javax.servlet.http.HttpServletResponse javax.servlet.http.HttpServletResponse javax.servlet.http.HttpServletResponse
21 println java.io.PrintWriter UNKNOWNP.UNKNOWN java.io.PrintWriter
23 error org.apache.log4j.Logger org.apache.log4j.Logger org.slf4j.Logger
25 close java.sql.Connection java.sql.Connection java.sql.Connection

TABLE II
EXPERTISE PROFILES GENERATED FROM ProfileServlet

Profiles generated at Revision 3 Profiles generated at Revision 4
Developer With CPA and Commits/Blame With PPA and Commits/Blame With CPA and Blame With CPA and Commits
(1) (2) (3) (4) (5)
Alayne javax.servlet.GenericServlet javax.servlet.http.HttpServlet org.slf4j.LoggerFactory org.slf4j.LoggerFactory

javax.servlet.http.HttpRequest javax.servlet.http.HttpRequest javax.servlet.GenericServlet javax.servlet.GenericServlet
javax.servlet.http.HttpResponse javax.servlet.http.HttpResponse javax.servlet.http.HttpRequest javax.servlet.http.HttpRequest
com.customdb.DatabaseManager org.json.JSONObject javax.servlet.http.HttpResponse javax.servlet.http.HttpResponse
app.sample.ProfileUtil com.customdb.DatabaseManager com.customdb.DatabaseManager
java.io.PrintWriter app.sample.ProfileUtil app.sample.ProfileUtil
org.json.JSONObject java.io.PrintWriter java.io.PrintWriter

org.json.JSONObject org.json.JSONObject

Bronn org.apache.log4j.Logger org.apache.log4j.Logger org.slf4j.Logger org.apache.log4j.Logger
java.sql.Connection java.sql.Connection java.sql.Connection java.sql.Connection

TABLE III
HISTORICAL CHANGES TO ProfileServlet.

Ver. Author Message
1 Alayne Creating the basic ProfileServlet.
2 Bronn Adding Log4J logging in case an exception is thrown.
3 Bronn Properly closing the DB connection in finally.

describes operations of all its methods; the intuition being that
if a developer has read the API documentation of a class and is
able to use one or more of its methods then they can probably
use other methods in that class easily as well.

Definition 2. A developer’s expertise profile is a set of
Java classes that they may be familiar with.

Consider the commit log in Table III, which shows the
change history of the ProfileServlet class up its cur-
rent state as shown in Figure 1. The original author of
the file, Alayne, created the file in revision 1 of the
project and contributed most of its functionality including
getting a database connection using DatabaseManager, de-
termining the logged-in user from the request, fetching
their profile using ProfileUtils, converting the resulting
map into a JSONObject and printing out the result us-
ing response.getWriter().println(). Another developer,
Bronn, added two important pieces of functionality in the next
two versions. In revision 2, a Logger was created at what is
now line number 13 in order to log error messages at what
is now line number 23. In revision 3, a finally block was

added with a call to the close method of Connection in what
is now line number 25.

The second column of Table II shows the ideal expertise
profiles for these developers when considering changes to the
ProfileServlet class alone. Alayne’s profile consists of API
usages extracted from her initial contribution, which makes up
most of the functionality of ProfileServlet. Bronn’s profile
consists of API usages contributed in revision 2 and revision
3, viz. the Apache Log4J Logger and the JDBC Connection
object.

B. Research Questions

Recommender systems that can be developed using API
expertise profiles usually require harnessing data from thou-
sands of repositories in order to be effective. A system that
attempts to mine API usage profiles from such large numbers
of repositories would typically face the following roadblocks:

1) Every project has its own conventions for resolving
external dependencies to compile its source code. A
technique is needed to extract API usages (in the form
of fully-qualified class names) from the code in these
repositories without relying on complete program anal-
ysis.

2) Change-histories of large projects can stretch into thou-
sands of commits. Also, the libraries used across ver-
sions do not change very frequently. In order to improve
scalability, it would be desirable to have a technique that
can assign expertise to developers without walking the
entire change history.

1 package app.sample;
2
3 import java.sql.Connection;
4 import javax.servlet.http.HttpServlet;
5 import javax.servlet.http.HttpServletRequest;
6 import javax.servlet.http.HttpServletResponse;
7 import org.slf4j.Logger; // Added in revision 4 by Alayne
8 import org.slf4j.LoggerFactory; // Added in revision 4 by Alayne
9 import org.json.JSONObject;

10 import com.customdb.*;
11
12 public class ProfileServlet extends HttpServlet {
13 private Logger logger = LoggerFactory.getLogger(ProfileServlet.class);// Modified in revision 4 by Alayne
14
15 public void doGet(HttpServletRequest request, HttpServletResponse response) {
16 Connection conn = null;
17 try {
18 conn = DatabaseManager.getConnection();
19 JSONObject profileJson = new JSONObject(ProfileUtils.getProfileMap(conn,
20 request.getRemoteUser(), getInitParameter("PROFILE_SOURCE")));
21 response.getWriter().println(profileJson);
22 } catch (Exception e) {
23 logger.error("Something bad happened.", e); // Added in revision 2 by Bronn
24 } finally {
25 try { conn.close(); } catch (Exception ignore) {} // Added in revision 3 by Bronn
26 }
27 }
28 }

Fig. 2. The ProfileServlet class after revision 4 in which Alayne migrated the logging framework from Apache Log4J to SLF4J.

We address these roadblocks by considering two approxi-
mate techniques for API usage extraction and expertise assign-
ment respectively and formulate three research questions for
evaluating the effectiveness of these techniques individually as
well as in combination.

1) Partial Program Analysis (PPA): Most static analy-
sis tools for Java, such as the Eclipse Java Development
Toolkit [8] or the Soot [9] framework, require all of the
project’s dependencies, both internal and external, to be avail-
able in source or byte-code form, in order to generate inter-
mediate representations (IR) with method and type bindings
resolved. For applications such as program optimization which
require hard guarantees on correctness of the IR, a complete
program analysis tool is the ideal solution.

Partial program analysis [7] is a technique that was devel-
oped specifically for software engineering applications that
can tolerate some level of imprecision in the IR. PPA uses
type inference and heuristics to resolve as many bindings as
possible in the source code of a Java class without requiring
information about any other classes in either source or binary
form. Hence, it is an ideal candidate for the purpose of API
usage mining from software repositories.

PPA has in the past been evaluated for its quality of
type resolution when analyzing only one class at a time
independently of other artifacts. The original study evaluated
four open-source projects for which 91.2% type facts were cor-
rectly inferred and only 2.7% of type facts were erroneously
reported. However, three of these projects did not have any

external dependencies (apart from the Java standard library)
and the evaluation considered partially qualified type bindings
as correct resolutions if the base identifiers matched. Since
our application of API expertise profiles mainly deals with
detecting fully qualified names of artifacts from third-party
libraries, these results cannot be directly extended without
formal evaluation.

Although the literature contains several uses of PPA for
software engineering applications that analyze project change
history [10]–[12], none of these studies have empirically eval-
uated the quality of the resulting applications or recommenda-
tions in comparison to those that could have been developed
if it was possible to resolve all type bindings correctly. Our
first research question is thus:

RQ 1. Do the API usages extracted by partial program
analysis enable the generation of expertise profiles of
comparable quality to those that could have been gen-
erated using complete program analysis?

The fourth column of Table I shows the API usages that
partial program analysis would extract from the code in
Figure 1 by looking at the ProfileServlet class alone. PPA
is able to correctly resolve references to types that have been
explicitly imported, including method invocations on objects
of those types. However, due to incomplete information about
other artifacts in the project or about external dependencies,
PPA is unable to resolve all types.

Firstly, due to the wild-card import on line 10, any un-
qualified usage of class names introduces an ambiguity. It
is not possible to determine, by looking at one file alone,
whether such a class belongs in the same package as this
file, or whether it is implicitly imported from one of the
wild-card imported packages. Hence, PPA returns a qualifi-
cation of UNKNOWN for references to DatabaseManager and
ProfileUtils on lines 18 and 19 respectively.

Secondly, PPA does not have a model of classes defined out-
side this file, such as HttpServlet or HttpRequest. Hence,
it incorrectly attributes the call to getInitParameter on line
20 as belonging to HttpServlet when in fact it belongs to
its super-class GenericServlet. Similarly, since PPA does not
know the return type of HttpRequest.getWriter(), it cannot
correctly identify the target of println on line 21.

In this example, out of the 10 API usages, PPA is able to
correctly infer 6 instances while incorrectly reporting only 1
instance. The expertise profile of developers generated using
these API usages is shown in the third column of Table II.
Here, there is a loss in precision due to the assignment of
an incorrect API (HttpServlet) to Alayne. Her profile is also
missing some entries that were present in the previous column
(profiles generated by CPA) which implies a loss of recall.
However, since expertise profiles for developers are typically
created by combining the result of analyzing all classes in a
project, it is possible (and perhaps even likely) that another
usage of these missing APIs by the same developer would
be correctly inferred by PPA and hence the overall expertise
profiles would have better recall overall. This is exactly what
we intend to discover with our first research question.

2) Blame-based expertise assignment: The second road-
block for mining large numbers of repositories pertains to
practical issues concerning scalability when having to walk
through entire change histories of every candidate project.

An alternative approach is to analyze only one version of the
project (e.g. the latest version), and use blame information to
assign expertise to developers. The blame operation, available
in most version control systems, annotates every line in a given
file at some version with the name of the developer who last
authored that line of code, along with the revision number
in which it was last committed, much like the comments
in Figure 1. Thus, an approximate expertise profile can be
generated by extracting API usages at every line in every
source file at the latest version and assigning these APIs to
the developers who can be blamed for introducing that line of
code.

Such a technique requires only one pass over all files at
the latest version of every project, thereby greatly reducing
the computational costs associated with expertise mining.
However, the use of blame information at just the latest
version implies that this technique is unable to mine expertise
from code that was contributed in some earlier version but
subsequently deleted or overwritten by another developer.
Again, as in our earlier research question, we hypothesize this
technique might still be useful because an instance of API
usage by a developer that is missed in one context may be

recovered by a successful assignment in another context where
the code has not been overwritten.

RQ 2. Is it sufficient to use blame information to assign
API usage expertise to developers instead of walking the
entire change history of a project?

Consider again the code in Figure 1 and the actual API
usages (as extracted by a complete program analysis) in the
third column of Table I. Also consider the log of changes
in Table III. In the first three revisions, none of the lines of
code that were originally introduced have been overwritten by
another developer. Hence, the expertise profiles for developers
generated using the blame-based technique at this point is the
same as in the case of change-set based assignment and is
shown in the second column of Table II.

Now say the ProfileServlet class undergoes another
change (revision 4). In this case, Alayne decides to replace
the use of Apache Log4J with the Simple Logging Facade for
Java (SLF4J). The only modifications in the code required to
do this involve changing the factory method at line 13 and
adding corresponding imports for SLF4J. Figure 2 shows the
source code of the ProfileServlet class at version 4.

Now, if API usage were to be extracted from this version of
the code the results would be as shown in the right-most col-
umn of Table I. The two differences from the second column
are: (1) Line 13 now contains a reference to LoggerFactory
from org.slf4j and (2) Line 23 now invokes the error
method of org.slf4j.Logger.

If expertise were to be assigned to developers using
the blame-based assignment, two discrepancies would arise.
Firstly, Bronn will incorrectly be assigned familiarity with
org.slf4j.Logger due to the annotation at line 23, and
secondly, the fact that he had once used the Apache Log4J API
is now lost in history. The fourth column in Table II shows
the profiles that would result with this technique. If instead
API usages were extracted per-commit and assigned only to
the author of that change-set, they would correctly retain the
information that Alayne used org.apache.log4j.Logger as
shown in the last column.

However, we expect such a change that modifies the de-
clared type of an object while preserving its invocations
(having identical method signatures) to be a rare occurrence
in practice. Hence, while we expect the blame-based approach
to generally suffer in recall, we do not expect much loss
in precision overall. Since recommender systems are more
sensitive to precision than recall, the second research question
intends to explore whether this approach is acceptable.

3) PPA + Blame: The first two research questions explore
the effect of changing two variables independently: (1) the
technique used for extracting API references from code and
(2) the approach for assigning expertise to developers using
extracted APIs.

Since the aforementioned approximations (PPA and blame)
have been proposed to improve the feasibility and scalability

TABLE IV
SUBJECTS USED IN OUR EXPERIMENT

> 5
Subject Commits Java Files Dev. Commits JARs
Bukkit/CraftBukkit 2, 410 507 162 40 17

nasa/mct 677 903 16 10 74

nysenate/OpenLegislation 702 146 12 7 63

square/picasso 330 47 43 7 53

Total 4, 119 1, 603 233 64 207

of expertise mining, we are also interested in evaluating the
effect of applying these techniques in combination. Our third
research question is thus:

RQ 3. Is the combination of Partial Program Analysis
and blame information an effective heuristic for generat-
ing API expertise profiles?

III. EVALUATION

A. Data Set

We address each research question by performing an exper-
iment on four subjects. These subjects, listed in Table IV,
are open-source Java projects that are hosted on GitHub.
CraftBukkit is an implementation of the MineCraft Server
API. mct is a real time monitoring and visualization plat-
form developed at NASA Ames Research Center for use in
spaceflight mission operations, OpenLegislation is a web
service that delivers legislative information from the New York
State Senate and Assembly to the public in near real time
and picasso is an image downloading and caching library
for Android. The reason why we chose these projects is that
they represent a variety of real-world applications with many
domain-specific dependencies (the number of JARs required
by the project in the latest version is shown in the last table
of the column) that could fetched using Apache Maven. Also,
these subjects have a good amount of change history (ranging
from 330 to over 2, 400 commits) and several developers (43
to 167) who have made at least one commit. However, since
our application was the generation of expertise profiles which
depends on analyzing code contributed by developers, we only
generated profiles for developers who had a minimum of 5
commits (threshold identified using interquartile ranges) to the
project. Also, we only analyzed a subset of files in each project
which were under the path src/main/java inside various sub-
components in the projects. This was done so that we could
carefully resolve dependencies using Apache Maven at each
commit to generate the ground truth set as explained next.
Finally, we consider API usage expertise only for third party
libraries and hence did not assign to developers API usages
of classes defined in the same project to developers.

B. Data Collection

1) Ground Truth: In order to address each of the three
research questions, we need to evaluate each strategy and
compare its results with an ideal truth set. For the purposes
of building expertise profiles, the ideal strategy is to walk the

entire change history of a project, and for each change-set,
assign its author the APIs extracted from the committed delta
using complete program analysis (CPA). Hence, we refer to
this strategy as CPA-COMMITS.

We constructed this ground truth set by manually ensuring
that each intermediate revision had its dependencies resolved
(JARs were downloaded from the Apache Maven repository).
For CPA we used the Eclipse JDT Core [8] which allowed us
to construct an abstract syntax tree (AST) of a Java file and
resolve type bindings as long as all the project’s source files
and binaries of external libraries were on the class-path. For
each file modified in a commit, we constructed ASTs for the
state of the file before and after the change, and extracted API
references in all nodes present in lines that were modified or
newly added. These API references were then added to the
experience profile of the author of the commit.

2) Partial program analysis: For RQ1, we needed to eval-
uate partial program analysis (PPA) for its effectiveness in
building expertise profiles. We leveraged the implementation
of PPA for Eclipse 3 which allowed us to use the same AST-
based approach as we did when constructing the ground truth,
but instead used PPA for resolving type and method bindings
in the AST nodes. The main difference between using CPA
and PPA for type resolution is that PPA does not require
information about other source files in the project or any
library JARs on the class-path. In fact, PPA can analyze just
a string of source code for a Java class on its own. Thus,
in theory, PPA could be applied even for projects whose
dependencies cannot be resolved. For RQ1, we wanted to
only change the method of API usage extraction and not
the approach for assigning expertise. Hence, we used the
same change-history walking approach to assign extracted API
references in lines modified or added in each change-set to the
author of that change-set. We call this data set PPA-COMMITS.

3) Blame-based expertise assignment: For RQ2, we wanted
to evaluate just the effect of using blame as a method of
expertise assignment as opposed to walking entire change
histories of every project. Hence, for this experiment, we
compared different expertise assignment strategies using CPA
only. The candidate data set collected in this experiment is thus
called CPA-BLAME. This data was collected by performing the
git blame operation on each Java file in the candidate data
sets at the latest versions of the project. The blame operation
annotates each line with the commit that it was last modified,
which can be used to get the developer who authored that line
of code. API references were extracted per Java file using the
standard Eclipse JDT-based CPA technique for type resolution,
and then the references on each line were associated with the
author of that line. The resulting expertise were compared with
the original ground truth of CPA-COMMITS.

4) PPA + Blame: For RQ3, we combined the previous two
approaches by using PPA for extracting API references from
Java files at the latest version of each project and associating
API usages at each line with the author of that line of code

3http://www.sable.mcgill.ca/ppa/ppa eclipse.html

CraftBukkit OpenLegislation mct picasso

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00
Precision

R
ec

al
l

Fig. 3. Scatter plot of precision and recall per developer for PPA-COMMITS

using git blame. This data set is called PPA-BLAME and was
evaluated against the ground truth of CPA-COMMITS. Thus,
this experiment intended to evaluate the effect of changing
both variables (API extraction and expertise assignment) at
the same time.

C. Evaluation Metrics

We use precision and recall metrics to compare the good-
ness of PPA-COMMITS, CPA-BLAME and PPA-BLAME strate-
gies with the ground truth of CPA-COMMITS. Even though our
experiments are not evaluating a search-and-retrieve system,
the expertise profiles we produce are a collection of APIs
and we intended to evaluate the quality of these profiles with
respect to those generated by the CPA-COMMITS approach.
Our system can be thus be considered a recommender system
for which precision and recall are standard evaluation metrics.

We explicitly define precision as the fraction of API usages
present in the profile generated by the candidate strategy (S) in
consideration (one of PPA-COMMITS or CPA-BLAME or PPA-
BLAME) overlapping with API usages identified in the ground
truth profile (CPA-COMMITS) over the total number of API
usages in the expertise profile of the candidate strategy S.

Precision =
|ProfileS

⋂
ProfileCPA-COMMITS|

|ProfileS |
(1)

Similarly, the recall of an expertise profile generation strat-
egy S (one of PPA-COMMITS or CPA-BLAME or PPA-BLAME)
is the number of API usages overlapping with API usages in
the ground truth (CPA-COMMITS) over the total number of API
usages in the profile of the ground truth (CPA-COMMITS).

Recall =
|ProfileS

⋂
ProfileCPA-COMMITS|

|ProfileCPA-COMMITS|
(2)

In our experiments, precision and recall are calculated and
presented both at a developer-level (which only considers
profiles as a set of classes assigned to that developer in both
the candidate and the ground truth) as well as at a project level
(which considers the profile as a set of pairs of developers and
the classes associated with them).

D. Experiments

1) PPA-COMMITS vs. CPA-COMMITS: This experiment was
intended to answer the first research question:

RQ 1. Do the API usages extracted by partial program
analysis enable the generation of expertise profiles of
comparable quality to those that could have been gen-
erated using complete program analysis?

Results: Figure 3 presents a scatter plot of precision vs.
recall across all subjects. Each data point represents an in-
dividual developer’s precision and recall values. For 52 of
64 developers, both precision and recall values are greater
than 0.75. For 7 out of 64 developers, all API usages were
perfectly identified (precision = 1 and recall = 1). The other
precision and recall values are not too far away from 100% in
all subjects. The project-level precision and recall values are
listed in Table V (columns 2–4). For every developer whose
who had an expertise profile using CPA, there was an expertise
profile for PPA as well. Across the four subjects, the project-
level precision is between 0.8 and 0.9, while recall is always
greater than 0.9.

Discussion: In this experiment we evaluated the imperfec-
tion introduced in extraction of API usages by partial program
analysis. PPA scores well in terms of precisely identifying the
API usage expertise for developer in comparison with CPA.
From a recall perspective, PPA suffers only when it cannot
guess the right type due to import ambiguity (such as in
the presence of wild-card imports). However, since expertise
profiles are generated by collecting API references for each
developer across multiple files, the final result has a high recall
value. In general PPA seems to perform very well as compared
to CPA for the purposes of expertise identification.

2) CPA-BLAME vs. CPA-COMMITS: This experiment was
intended to answer the second research question:

RQ 2. Is it sufficient to use blame information to assign
API usage expertise to developers instead of walking the
entire change history of a project?

Results: Figure 4 presents a scatter plot of precision vs.
recall across all subjects. The average precision and recall
values per subject is listed in Table V (columns 5–7). For 37
out of 56 developers, API usages have been precisely identified
(precision = 1), though a perfect match occurred for only 4

TABLE V
PROJECT LEVEL PRECISION AND RECALL FOR RQ1, RQ2 AND RQ3

RQ1: PPA-COMMITS RQ2: CPA-BLAME RQ3: PPA-BLAME
Subjects # of Active # of Active # of Active

Developers P R Developers P R Developers P R
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

CraftBukkit 40 0.86 0.94 38 0.97 0.56 38 0.94 0.52
NASA mct 10 0.90 0.99 9 0.98 0.48 10 0.92 0.48

OpenLegislation 7 0.84 0.91 4 1 0.66 4 0.96 0.61
picasso 7 0.87 0.90 5 1 0.59 5 0.86 0.52

CraftBukkit OpenLegislation mct picasso

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00
Precision

R
ec

al
l

Fig. 4. Scatter plot of precision and recall per developer for CPA-BLAME

developers. Precision and recall values at project-level ranges
from 0.97 to 1 and 0.48 to 0.66 respectively. This technique
missed out API usage for 8 developers.

Discussion: In this experiment we evaluated the imper-
fection introduced in assigning of API usage expertise to
developers. Since both the candidate and the ground truth were
using CPA, the extraction of API usages would be almost
identical. As observed, for 66% of developers the precision
is 1.

The blame strategy suffers in recall because code con-
tributed by one developer may have been overwritten by an-
other developer. This means that developers might be assigned
fewer API usages than what they actually used. In fact, this
might even cause some developers to have completely empty
expertise profiles. In our evaluation, we found empty profiles
for a couple of developers in each subject.

3) PPA-BLAME vs. CPA-COMMITS: This experiment was
intended to answer the third research question:

RQ 3. Is the combination of Partial Program Analysis
and blame information an effective heuristic for generat-
ing API expertise profiles?

Results: Figure 5 shows the scatter plots of precision and
recall for the combined PPA-BLAME strategy at a developer
level. Table V (columns 8–10) lists the project-level precision
and recall. For 20 out of 57 developers, API usages have
been precisely identified (precision = 1), however for only
2 developers all their API usages have been successfully
identified (recall = 1). Precision values at the project level
are above 86% across subjects, and recall is in the range of

48% to 61%.
Discussion: In this experiment we evaluated the imperfec-

tion introduced as a combination of both partial program
analysis for extracting API usages and assignment of API
usage to developers using the blame heuristic. We anticipated
a loss of precision and recall when compared to CPA-BLAME
(analysed in RQ2). Interestingly, the precision numbers do not
decrease drastically and the precision, recall values are similar
to combining CPA with blame, across all the projects. This
emphasizes the observation that PPA is a viable alternative
for CPA for API usage determination from source code,
irrespective of the API usage assignment strategy.

IV. THREATS TO VALIDITY

In this section we enumerate some factors which might
threaten the validity of our experiments.

Truth Set: The generation of the ground truth of CPA-
COMMITS depends on the compilable program assumption.
That is, we assume that at each version the source code is in
a compilable state such that we can accurately resolve type
bindings for extracting API usages. If some files have been
checked-in with syntactic errors or with non-compliant code4,
our ground truth would have missed these API references.
However, these API references could have been extracted at
the latest version when the issues were fixed and hence they
might show up in the blame-based approaches. In these cases,
some of the false positives we reported might in fact be true
positives, while some reported true negatives might actually
be false negatives.

4Our analysis was restricted to Java 1.6 compliance since this was a
constraint on the latest implementation of PPA

CraftBukkit OpenLegislation mct picasso

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00
Precision

R
ec

al
l

Fig. 5. Scatter plot of precision and recall per developer for PPA-BLAME

File renames and code refactoring: We do not track file
renames in either our blame-based or change-set walking
approaches. In our experiments, the renaming or moving of
a file would appear as a deletion of the old file with the
addition of a new file. Similarly, we do not explicitly identify
commits that only perform refactoring. In the future, we
plan to use automated tool support for pruning non-essential
commits [12].

External validity: Our experiments were focused on evalu-
ating PPA in the context of Java projects. Hence our results
cannot generalize over non-Java projects. At this time we
are not aware of partial program analysis techniques for
dynamically typed languages such as Python or JavaScript.
Further, within Java projects, we only used Java 6 compliant
projects as the implementation of PPA we used is implemented
for Java 6 and less. In order to replicate these results for Java
7 and beyond, the current implementation of PPA would need
to be extended.

V. RELATED WORK

In prior work [5], we proposed a system for generating
social recommendations for developers by mining large num-
bers of project repositories. We also demonstrated a prototype,
APINet, which generated recommendations for over 5000
developers whose profiles were mined from 568 Java projects
hosted on GitHub. We observed that in cases where developers
contributed to multiple projects, these projects often used
similar libraries. This motivated our explorations of API usage
expertise mining as we believe that the knowledge of a library
API is a transferable skill that can be leveraged to seed various
recommender systems in a multi-project scenario.

The differentiation between implementation expertise and
usage expertise was first made by Schuler and Zimmerman [4],
who extracted method invocations from CVS repositories of
the Eclipse project. They, too, noted the potential difficulty in
generating typed representations using build and link tools and
thus only reported usage expertise in the form of unqualified
method identifiers.

Several static analysis tools have been developed to han-
dle incomplete programs. Example include partial data flow
analysis [13] and fragment class analysis [14]. However,
these techniques are mainly geared towards enabling sound
analysis of parts of a program using summary information for

the incomplete portions. Since we were mainly interested in
resolving type bindings from code that may have syntactic
ambiguities with a tolerance for slight imprecision, we chose
partial program analysis [7] (PPA) as the tool that best suited
our needs.

PPA itself has been used in several applications that ana-
lyze code from version histories [10]–[12]. However, we are
not aware of any other study that specifically evaluated the
effectiveness of PPA in terms of the results generated by
the application as compared to the ideal output. Also, since
the original evaluation of PPA [7] reported results based on
qualified type inferencing, we could not extend those results
directly for our application of expertise profile generation
which depends on resolving fully qualified types.

The tool that we found came closest to PPA was Baker [15].
This tool is mainly aimed at extracting API references from
snippets of code found on the Web (such as on Q&A forums)
for the purpose of bi-directional linking of appropriate API
documentation. Baker itself uses PPA, but resolves ambiguities
by employing a constraint solving technique with the help
of an oracle, which is basically a dictionary of millions of
method signatures harvested from JARs of commonly used
Java libraries. While this approach works very well for code
snippets, its current design is not particularly suited for exper-
tise mining within a project. The reason for this is that unlike
PPA, which only qualifies class names using information from
import statements, Baker assumes that the input is missing
imports and tries to find a match from its large database.
For example, when we asked Baker to analyze the code in
Figure 1, it guessed that DatabaseManager possibly belongs
to the package org.nuiton.topia.migration, since a class
with the same name exists in that library and also has a
method called getConnection which returns an object of type
Connection. As our application of expertise identification is
more sensitive toward precision rather than recall, we did not
use Baker as-is. However, personal communication with the
author revealed that it is possible to modify Baker to take
advantage of the fact that the input is an entire file and not just
a snippet of code. It remains to be seen how the oracle-based
approach of such a customized version of Baker compares
with the default PPA implementation for the purposes of API
extraction within a project.

TABLE VI
SUMMARY OF DESIGN CHOICES

Libraries Resource Proposed
Available? Constraints? Approach

Yes No CPA-COMMITS
Yes Yes CPA-BLAME
No No PPA-COMMITS
No Yes PPA-BLAME

VI. CONCLUSION AND FUTURE WORK

In this paper, we evaluated various design choices for
generating external API expertise profiles of developers by
analyzing their code contributions in version management sys-
tems. The techniques were: (1) complete program analysis on
each change-set, (2) partial program analysis on each change-
set, (3) complete program analysis on the latest snapshot with
blame information, and (4) partial program analysis on the
latest snapshot with blame information. Table VI summarizes
our design choices and the constraints for which each choice
was considered. We evaluated these design choices on four
open source Java 6 projects available on GitHub.

We found that performing partial program analysis as
opposed to complete program analysis on complete change
history leads leads to a precision of 85–90% and a recall of 90–
99% in the generated expertise profiles. This makes us reach
the conclusion that for extracting API usage profiles, partial
program based analysis provides a feasible alternative solution
to complete program analysis. However, when we move from
processing complete change history to processing code at a
particular snapshot and use blame for expertise assignment,
there is a significant recall loss. For the complete program
analysis technique itself this recall loss varied from 34% to
52% and with partial program analysis between 39% to 52%.
Thus, for the purposes of expertise assignment, the blame-
based solution may not be acceptable. A trade-off would need
to be made with respect to achieving higher levels of recall and
taking into consideration practical resource constraints. The
expertise profiles generated in our experiments are available
at http://code.comprehend.in:8080/ppa-expertise.

This work sets the foundation for several interesting threads
for future work. Firstly, the problem of extracting API us-
ages is even harder in dynamically typed languages such as
JavaScript and Ruby. Secondly, in this paper we restricted
ourselves to identifying third-party APIs referenced by de-
velopers. However, does this really translate to a developer’s
expertise? Or do we need additional information about the
manner in which developers use APIs? For example, is a
developer more of an expert in an API if they have used the
same API multiple times? Or is a developer’s use of multiple
methods in a class (or multiple classes within a package) a
better indicator of their expertise? And does a developer’s
expertise decrease over time if they do not use an API? We
plan to explore these factors via qualitative user studies in
future work.

REFERENCES

[1] A. Mockus and J. D. Herbsleb, “Expertise browser: A quantitative
approach to identifying expertise,” in Proceedings of the 24th
International Conference on Software Engineering, ser. ICSE ’02.
New York, NY, USA: ACM, 2002, pp. 503–512. [Online]. Available:
http://doi.acm.org/10.1145/581339.581401

[2] J. Anvik and G. C. Murphy, “Determining implementation expertise
from bug reports,” in Proceedings of the Fourth International Workshop
on Mining Software Repositories, ser. MSR ’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 2–. [Online]. Available:
http://dx.doi.org/10.1109/MSR.2007.7

[3] T. Fritz, J. Ou, G. C. Murphy, and E. Murphy-Hill, “A degree-of-
knowledge model to capture source code familiarity,” in Proceedings of
the 32Nd ACM/IEEE International Conference on Software Engineering
- Volume 1, ser. ICSE ’10. New York, NY, USA: ACM, 2010, pp. 385–
394. [Online]. Available: http://doi.acm.org/10.1145/1806799.1806856

[4] D. Schuler and T. Zimmermann, “Mining usage expertise from
version archives,” in Proceedings of the 2008 International Working
Conference on Mining Software Repositories, ser. MSR ’08. New
York, NY, USA: ACM, 2008, pp. 121–124. [Online]. Available:
http://doi.acm.org/10.1145/1370750.1370779

[5] R. Padhye, D. Mukherjee, and V. S. Sinha, “API as a social glue,”
in Companion Proceedings of the 36th International Conference
on Software Engineering, ser. ICSE Companion 2014. New
York, NY, USA: ACM, 2014, pp. 516–519. [Online]. Available:
http://doi.acm.org/10.1145/2591062.2591115

[6] C. C. Williams and J. K. Hollingsworth, “Automatic mining of source
code repositories to improve bug finding techniques,” IEEE Trans.
Softw. Eng., vol. 31, no. 6, pp. 466–480, Jun. 2005. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2005.63

[7] B. Dagenais and L. Hendren, “Enabling static analysis for partial Java
programs,” in Proceedings of the 23rd ACM SIGPLAN Conference
on Object-oriented Programming Systems Languages and Applications,
ser. OOPSLA ’08. New York, NY, USA: ACM, 2008, pp. 313–328.
[Online]. Available: http://doi.acm.org/10.1145/1449764.1449790

[8] Eclipse Foundation, “Java Development Tools,” http://www.eclipse.org/
jdt/.

[9] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot - a Java bytecode optimization framework,” in Proceedings of the
1999 Conference of the Centre for Advanced Studies on Collaborative
Research, ser. CASCON ’99. IBM Press, 1999, pp. 13–. [Online].
Available: http://dl.acm.org/citation.cfm?id=781995.782008

[10] B. Dagenais and M. P. Robillard, “SemDiff: Analysis and
recommendation support for API evolution,” in Proceedings of the
31st International Conference on Software Engineering, ser. ICSE ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 599–602.
[Online]. Available: http://dx.doi.org/10.1109/ICSE.2009.5070565

[11] K. S. Herzig, “Capturing the long-term impact of changes,”
in Proceedings of the 32Nd ACM/IEEE International Conference
on Software Engineering - Volume 2, ser. ICSE ’10. New
York, NY, USA: ACM, 2010, pp. 393–396. [Online]. Available:
http://doi.acm.org/10.1145/1810295.1810401

[12] D. Kawrykow and M. P. Robillard, “Non-essential changes in version
histories,” in Proceedings of the 33rd International Conference on
Software Engineering, ser. ICSE ’11. New York, NY, USA: ACM,
2011, pp. 351–360. [Online]. Available: http://doi.acm.org/10.1145/
1985793.1985842

[13] E. Duesterwald, R. Gupta, and M. L. Soffa, “A practical framework
for demand-driven interprocedural data flow analysis,” ACM Trans.
Program. Lang. Syst., vol. 19, no. 6, pp. 992–1030, Nov. 1997.
[Online]. Available: http://doi.acm.org/10.1145/267959.269970

[14] A. Rountev, A. Milanova, and B. G. Ryder, “Fragment class analysis
for testing of polymorphism in Java software,” IEEE Trans. Softw.
Eng., vol. 30, no. 6, pp. 372–387, Jun. 2004. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2004.20

[15] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live API
documentation,” in Proceedings of the 36th International Conference
on Software Engineering, ser. ICSE 2014. New York, NY, USA:
ACM, 2014, pp. 643–652. [Online]. Available: http://doi.acm.org/10.
1145/2568225.2568313

